Spin-orbit-mediated spin relaxation in ballistic graphene materials
نویسندگان
چکیده
Most of the work on understanding spin relaxation in graphene for spintronic applications relies on the assumption that spin polarization is lost due to scattering and dephasing processes. Here, we present results of a recent theoretical study of spin dynamics of supported graphene in the ballistic regime [1]. This can be relevant in high-quality devices where electron scattering no longer dominates the spin relaxation. In this case, spin-orbit coupling induced by a substrate is sufficient to dephase the spin precession and limit the spin lifetime to a few ns. In addition, the conditions to observe spin transport anisotropy is discussed in this clean limit. Finally, the case of bilayer graphene, strongly debated in the literature [2], will be considered in order to clarify experimental results [3].
منابع مشابه
Quantum Interference Control of Ballistic Magneto- resistance in a Magnetic Nanowire Containing Two Atomic- Size Domain Walls
The magnetoresistance of a one-dimensional electron gas in a metallic ferromagnetic nanowire containing two atomic-size domain walls has been investigated in the presence of spin-orbit interaction. The magnetoresistance is calculated in the ballistic regime, within the Landauer-Büttiker formalism. It has been demonstrated that the conductance of a magnetic nanowire with double domain walls...
متن کاملPseudospin-driven spin relaxation mechanism in graphene
The prospect of transporting spin information over long distances in graphene, possible because of its small intrinsic spin– orbit coupling (SOC) and vanishing hyperfine interaction, has stimulated intense research exploring spintronics applications. However, measured spin relaxation times are orders of magnitude smaller than initially predicted, while the main physical process for spin dephasi...
متن کاملTheory of spin-orbit induced spin relaxation in functionalized graphene
We perform a comparative study of the spin relaxation by spin-orbit coupling induced from adatoms (hydrogen and fluorine) in graphene. Two methods are applied, giving consistent results: a full quantum transport simulation of a graphene nanoribbon, and a T-matrix calculation using Green’s functions for a single adatom in graphene. For hydrogenated graphene the dominant spinorbit term for spin r...
متن کاملSpin-orbit coupling in fluorinated graphene
We report on theoretical investigations of the spin-orbit coupling effects in fluorinated graphene. First-principles density functional calculations are performed for the dense and dilute adatom coverage limits. The dense limit is represented by the single-side semifluorinated graphene, which is a metal with spin-orbit splittings of about 10 meV. To simulate the effects of a single adatom, we a...
متن کاملElectron spin dynamics and electron spin resonance in graphene
A theory of spin relaxation in graphene including intrinsic, Bychkov-Rashba, and ripple spinorbit coupling is presented. We find from spin relaxation data by Tombros et al. (Nature, 448 (2007) 571) that intrinsic spin-orbit coupling dominates over other contributions with a coupling constant of 3.7 meV. Although it is 1–3 orders of magnitude larger than those obtained from first principles, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017